

BTB08/BTA08

Features

- On-state rms current, IT(RMS) 8 A
- Repetitive peak off-state voltage, V_{DRM} / V_{RRM} 600 V to 800 V
- Triggering gate current, IGT (Q1) 5 to 50 mA

Description

Available either in through-hole and surfacemount packages, these devices are suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits or for phase control operation in light dimmers and motor speed controllers, etc.

The Snubberless versions (BTA, BTB08_xxxxW and T8 series) are specially recommended for use on inductive loads, thanks to their high commutation performance.

Logic level versions are designed to interface directly with low power drivers such as Microcontrollers.

Characteristics

Table 1: Absolute maximum ratings (T _j = 25 °C unless otherwise stated)
-------------------------------------	---

Symbol	Paran	Value	Unit			
I _{T(RMS)}	RMS on-state current (full sine wave)	IPAK, DPAK, TO-220AB, D²PAK	T _c = 110 °C	8	A	
		TO-220ABIns.	T _c = 100 °C			
	Non repetitive surge peak	f = 50 Hz	t = 20 ms	80		
Ітѕм	on-state current (full cycle, T _j initial = 25 °C)	f = 60 Hz	t _p = 16.7 ms	84	A	
l ² t	I ² t value for fusing	$t_p = 10 \text{ ms}$	36	A ² s		
dl/dt	Critical rate of rise of on-state current $I_G = 2 x I_{GT}$, tr $\leq 100 \text{ ns}$	f = 120 Hz	T _j = 125 °C	50	A∕µs	
IGM	Peak gate current	t _p = 20 μs	T _j = 125 °C	4	А	
P _{G(AV)}	Average gate power dissipation	1	W			
T _{stg}	Storage junction temperature range	-40 to +150	°C			
Tj	Operating junction temperature rar	-40 to +125	°C			

Table 2: Electrical characteristics (T_i = 25 °C, unless otherwise specified) Snubberless and logic level (3 quadrants)

Symbol	Parameter	Quadrant		Т8		BTA08/BTB08				Unit	
Symbol	Parameter	Quadrant		10	35	50	тw	SW	cw	BW	Unit
Ідт ⁽¹⁾	V _D = 12 V,	- -	Max.	10	35	50	5	10	35	50	mA
VGT	R∟ =1 00Ω	- -	Max.				1.2				V
V _{GD}	$\label{eq:VD} \begin{split} V_D &= V_{DRM}, \\ R_L &= 3.3 \; k\Omega, \\ T_j &= 125 \; ^\circ C \end{split}$	1 - 11 - 111	Min.				0.2				v
IH ⁽²⁾	I⊤ = 100 mA		Max.	15	35	50	10	15	35	50	mA
	Ig = 1.2 х Igт	I - III	Max.	25	50	70	10	25	50	70	mA
l IL	$IG = 1.2 \times IGT$	Ш	Max.	30	60	80	15	30	60	80	mA
dV/dt	$V_D = 67\% V_{DRM},$ gate open, $T_j = 125 \text{ °C}$		Max.	40	400	1000	20	40	400	1000	V/µs
	$(dV/dt)c = 0.1 V/\mu s,$ T _j = 125 °C		Min.	5.4			3.5	5.4			
$(dl/dt)c \begin{array}{c} (dV/dt)c = 10 \\ T_j = 125 \ ^\circ C \end{array}$		l/μs,	Min.	2.8			1.5	2.98			A/ms
	Without snubb T _j = 125 °C	er,	Min.		4.5	7			4.5	7	

Notes:

 $^{(1)}\mbox{Minimum }I_{GT}$ is guaranteed at 5 % of I_{GT} max. $^{(2)}\mbox{For both polarities of A2 referenced to A1}$

Characteristics

an 178	Table 3: Standard (4 quadrants)								
Symbol	Demonster	Quadrant		BTA08/BTB08		11			
	Parameter	Quadrant		С	В	Unit			
І дт ⁽¹⁾	V _D = 12 V, R _L =100Ω	- -	Mox	25	35	mA			
		IV	Max.	50	100				
V _{GT}		All	Max.	1	.3	V			
V _{GD}	$V_D = V_{DRM}, R_L = 33 \ \Omega, T_j = 125 \ ^\circ C$	All	Min.	0.2		V			
Ι _Η (2)	I⊤ = 500 mA		Max.	25	50	mA			
١L	$I_{G} = 1.2 I_{GT}$	I - III - IV	Max	40	50	~			
		Ш	Max.	80	100	mA			
dV/dt ⁽²⁾	$V_D = 67 \% V_{DRM}$ gate open, $T_j = 125 \text{ °C}$		Min.	200	400				
(dl/dt)c ⁽²⁾	$(dI/dt)c = 5.3 \text{ A/ms}, T_j = 125 \text{ °C}$		Min.	5	10	V/µA			

Notes:

 $^{(1)}$ Minimum I_{GT} is guaranteed at 5 % of I_{GT} max.

(2) For both polarities of A2 referenced to A1

	Table 4. Static electrical characteristics								
Symbol	Test conditions		Value	Unit					
V _{TM} ⁽¹⁾	I _{TM} = 11 A, t _p = 380 μs	T _j = 25 °C	Max.	1.55	V				
V _{TO} ⁽¹⁾	threshold on-state voltage	T _j = 125 °C	Max.	0.85	V				
R _D ⁽¹⁾	Dynamic resistance	T _j = 125 °C	Max.	50	mΩ				
Idrm Irrm Vdrm = Vrrm	T _j = 25 °C	Max.	5	μA					
	T _i = 125 °C	Max.	1	mA					

Table 4: Static electrical characteristics

Notes:

⁽¹⁾For both polarities of A2 referenced to A1

Table 5: Thermal	resistance
------------------	------------

Symbol	Parameter			Value	Unit
Rth(j-c) Max. junction to case the resistance (AC)		se thermal	IPAK / D2PAK / DPAK / TO-220AB	1.6	°C/W
			TO-220AB Insulated	2.5	°C/W
	Junction to		D²PAK	45	
ambient		S = 1 cm ²	DPAK	70	
Rth(j-a)		TO-220AB / TO-220AB Insulated	60	°C/W	
	Junction to ambient		IPAK	100	

Notes:

⁽¹⁾S = Copper surface under tab

www.hexinsemi.com

4